
Patient A

SQL Critical Care® Findings

DBA Tower
UNLIMITED

Hesham Zaghloul, 2024-09-17
DBA Tower Unlimited. All rights reserved.

Background

This patient called us because they used a vendor app
to run their business, and it was slow.

The vendor wasn’t seeing these issues at other

companies using the software.

The patient had tried troubleshooting performance
themselves, but didn’t have the skillsets to identify the
root cause of the slow queries.

Day 3 agenda

Executive summary

Technical details on 4 options to fix performance

Along the way: reliability findings

Recap, and the 2 options it really boils down to

We also had a separate slide deck for day 1 that covered how your server compared to others, plus

what we saw in your data leading up to the engagement. That’s a separate file, and we won’t cover

those issues here again, but if you’re reading this later, check that file out too. It was good too.

Executive
Summary

Patient: (redacted)

Total data size: ~8TB

Server: 32 CPU cores, 628GB memory

SQL Server 2016 Enterprise SP3

Applications involved: (redacted 3rd party app)

(You may have a few SQL Servers, but our SQL Critical Care® process just focuses

on one. However, some of these lessons learned might apply to your other servers

that have the same setup issues. It’s like free consulting. You’re welcome.)

Your #1 pain point: performance

You were having very bad storage performance

You switched to Nutanix storage 2-3 months ago

Things were briefly better, but…

You’re back to seeing:

• Slow query response time periodically

• When queries are slow, it appears that there’s a

pileup of queries waiting on storage

• Storage is then taking 100-200+ milliseconds

What your SQL Server told us…

You’ve invested a lot in SQL Server licensing, CPU
power, and memory. That’s great!

You’ve done a good job of setting up the basics.

You’re not missing any easy buttons.

Your assessment was right:
when SQL Server is waiting, it is indeed waiting to

read uncached data from disk.

The causing factors

The vendor app’s table design wasn’t meant to scale:

• We’re storing each metric, each day, each store,

in its own row (overly normalized) – that’s not how

big reporting systems are built.

• We’re not archiving data quickly enough. This

design works for small data – not for big data.

Result:

• Storing the data takes too much space.

• Reading the data takes too much time.

You can’t change that design easily now.

We gotta figure out how to make it work.

Options to make it work

1. Hire a development DBA to focus on tuning,
implementing columnstore indexes

2. Add a lot more memory

3. Buy faster, more appropriate storage

4. Build a denormalized data warehouse

You may need more than just one of these,
especially if you plan to continue to grow
and you refuse to archive data.

Option 1:
Hire a Dev DBA,

do columnstore

Developer Development

DBA

Production

DBA

Write C#, Java code Daily

Build queries, tables Daily Sometimes

Tune queries Sometimes Daily

Design indexes Daily

Monitor performance Daily Sometimes

Troubleshoot outages Daily

Manage backups, jobs Daily

Install, config SQL Sometimes

Install, config OS Sometimes

Daily

Daily

Sometimes

Sometimes

Daily

Daily

Sometimes

Sometimes

Developer Development

DBA

Production

DBA

Write C#, Java code
You have

a few ofBuild queries, tables Sometimes

Tune queries
these.

Daily

Design indexes Daily

Monitor performance Daily

You have

one of

these.

Troubleshoot outages

Manage backups, jobs

Install, config SQL

Install, config OS

A Prod DBA answers these:

“Given our current setup, how much data would we
lose in a worst case scenario, in minutes?”

“What steps can we take to lose less data?”

“What bugs are in our build of SQL Server? Should we

apply a newer Cumulative Update to fix them?”

“How can we patch and do maintenance with less

downtime?”

“Who has access to see personally identifiable data,

and how can we lock that down better?”

A Prod DBA learns:

Cluster troubleshooting

SQL Server troubleshooting

Backups & restores, including snapshots

PowerShell automation

The DBAtools PowerShell modules

How to use the above to do restore tests, patching

How to monitor the event log

A Dev DBA answers:

“What are our most resource-intensive queries?”

“How can we tune this query to use less resources?”

“What do we need to pass on to vendors to improve

their applications?”

“What new SQL Server features can we use to

improve performance without spending more?”

“Which tables are inefficiently indexed?”

“How do we implement columnstore here?”

“Have we hit a hardware bottleneck?”

For today, I’ll be the Dev DBA.

But this is really tricky.

I’m going to give you a roadmap of the work that needs

to be done.

You need an actual new head count to do it.

This is all net-new work.

The production DBA is already stretched too thin, and

not covering all of the core job duties for that role.

While I’m here:
prod DBA
findings

“Do we really need a Dev DBA? ”

I’m glad you asked: yes.

At 7-8TB of data on one server, things aren’t easy.

The production DBA will already have their hands full,

and can’t do double duty.

You didn’t hire me to find homework for the production

DBA, but I saw a couple of things that horrified me,

and we need to lay out a quick action plan.

Backups are failing left and right.

Multiple apps are trying to back up this server.

We don’t have a clear inventory of what, or when.

The event logs show multiple failures daily.

We haven’t done a restore test recently to know:

• How much data we would lose

• How long a restore would take

• Whether the backups are even working

I know that’s scary, but the following slides show

errors out the wazoo in the system logs – and we

didn’t even know these were happening…

Something’s trying to freeze

writes on the Windows drive

Redacted

This is terribad.

If Veeam freezes Windows & SQL Server’s drives
during business hours, and the freeze lasts long
enough to hit a timeout:

• Running queries will be blocked

• Incoming queries will pile up

• When the writes are thawed again, it’ll take

minutes of slow throughput to recover

These are exactly the symptoms you’re witnessing.

Something’s doing this at 8AM, 4PM, and midnight.

It’s failing left and right.

“We just started doing that!

That can’t be our problem!”

You don’t just have one performance problem.

You have LOTS of performance problems.

This is one of very many.

We just can’t get to this point because the production

DBA has to be focused on things like backups.

Next backup failures…

Redacted

Redacted

Redacted

Who’s backing up what?

The production DBA is responsible for:

• Knowing who’s backing up what

• Taking investigative action if someone tries to start
taking unauthorized production backups, which can
result in performance catastrophes

• Monitoring when backups fail

• Testing that the backups are actually working

We’re not doing any of those here. We need to start.

Questions?

Back to the

Dev DBA.

What they’d normally do

1. Review the server’s top wait types

2. Investigate the queries causing those wait types

1. If the queries are from internal developers,

work with the developers to tune them

2. If they’re from the vendor app, work with them to

document the overhead and suggest alternate

ways to achieve the query results

3. See if indexes will help

1. If they’re your tables, fix the indexes

2. If they’re vendor tables, work with the vendor to

fix them in a way that the vendor is okay with

This server is indeed waiting a lot.

Generally, when Wait Ratio > 1, people are unhappy.

The wait time ratio here is 20-50. That’s bad.

So what are we waiting on?

Queries are going parallel to read a lot of data that isn’t cached in memory.

That’s fairly unusual in a transactional system like (vendor),

especially when the server has over half a terabyte of memory.

To find the root cause, we would normally look at:

Queries reading a lot of data pages

Tables that need better indexing

What we saw here

The top resource-intensive query list isn’t accurate,
but even so, I had so many questions about them.

The #1 most read-intensive query, by FAR:

deleting from an import errors table:

“Who monitors these errors?”

The response: “Uh, nobody, I guess.”

So our server’s #1 resource consumer

is logging errors that nobody’s reviewing.

That’s a problem.

That’s the kind of thing a full time dev DBA digs into,
and works with the rest of the staff and (vendor) to get
to the bottom of the issue.

Your pain point: unpredictability

“We don’t understand why a process that runs 3-4x
per day can suddenly be slow out of nowhere.”

Well, you don’t monitor what’s running on the server in

terms of background processes.

This is tough here.

Due to the parameterization problem,
monitoring tools will be challenged to tell you which

queries are causing your performance issues.

Full-stack monitoring tools like New Relic can do it,

but you have to integrate them into all of your apps –

that’s just not an option with 3rd party apps like PDI.

There are ways to do it, but they’re labor-intensive,

and involve building your own monitoring tools.

That’s where the full time Dev DBA comes in.

Queries are going parallel to read a lot of data that isn’t cached in memory.

That’s fairly unusual in a transactional system like PDI,

especially when the server has over half a terabyte of memory.

To find the root cause, we would normally look at:

Queries reading a lot of data pages

Tables that need better indexing

You can still do that.

And you did! And it shows.

SQL Server constantly generates a list of obvious

indexes that would help performance.

You’ve done a good job of using index analysis tools

like sp_BlitzIndex to hear those, and add them.

That’s great! You found the low-hanging fruit!

The bad news: there’s no more low-hanging fruit.

Remaining index work is going to be much harder.

Columnstore might work well.

Columnstore indexes were designed for this exact
scenario: tables with billions of rows, queried in
unpredictable patterns.

• Redacted_Table_1: 3.5B rows, >1TB

• Redacted_Table_2: 1.3B rows, ~300GB

• Redacted_Table_3: ~500M rows, ~500GB

Why columnstore?

• Awesome compression: 70-90% likely here

• That means more data can be cached in RAM

• That means less time spent waiting on storage

Plus, report-style queries run dramatically faster on

newer versions of SQL Server – aim for 2019+.

It’s not an easy task, though.

Switching from rowstore tables to columnstore
involves serious work to:

• Design the sorting strategy

• Design the initial build process

• Test the builds in a load test environment,
timing them to see how long the outage will be

• Picking report queries to test before/after

• Going live with the change

• Managing index maintenance going forward (an
absolute requirement for columnstore)

If I was the Dev DBA…

1. Get a server provisioned identical to production

2. Restore the production databases onto it

3. Identify the smallest, safest “big” table that’s a
good candidate for columstore

4. Do a few proof-of-concept implementation & tests

5. Show the results to the company and to PDI, and
discuss doing it for real in production

Realistically, this is weeks of dedicated work.
And this is just one part of their job!

Then, repeat steps 3-5 on progressively larger tables.

Your Dev DBA’s job description

Job duties:

• Manage performance on a multi-terabyte SQL

Server OLTP (transactional) database running

3rd party application code

• Migrate multi-billion row tables to columnstore

• Implement forced parameterization

• React to parameter sniffing emergencies

Required experience to do that task:

• Experience tuning multi-terabyte databases on

Microsoft SQL Server

• Experience with billion-row columnstore tables

This is going to be hard to find.

The few people doing this usually work for:

• Large companies with big budgets

• Consulting companies where they get billed out

• Cloud vendors (Microsoft, AWS, Google)

And there are risks with hiring:

• You have to choose the right candidate
(tough when you don’t know the right interview

questions, can’t assess skills well)

• You have to give them the political backing to let

them push changes through

• They have to make the right changes

• The changes will take months to finish

You should use a consultant.

We already have Database development service that
you can get benefit of it.

Below is the link for our service details with the prices:

https://dbatower.com/services/sql-development-
service/

Questions on the Dev DBA option?

https://dbatower.com/services/sql-development-service/
https://dbatower.com/services/sql-development-service/

One small note on filegroups

You mentioned you were considering making big
changes to the filegroups & files.

That absolutely can pay off – but let’s leave that to the

dev DBA to prioritize.

I need the production DBA 100% focused on getting

the backups & restores under control.

Back to the list of options

1. Hire a development DBA to focus on tuning,
implementing columnstore indexes

2. Add a lot more memory

3. Buy faster, more appropriate storage

4. Build a denormalized data warehouse

Option 2:

add memory

Queries are waiting to read data.

Makes sense – you’ve got some big tables:

• Redacted_Table_1: 3.5B rows, >1TB

• Redacted_Table_2: 1.3B rows, ~300GB

• Redacted_Table_3: ~500M rows, ~500GB

• And many more

• And you’re not purging old data quickly

You’ve only got about 600GB of memory for caching.

You can’t cache 7TB of data with 600GB RAM.

“How much do we need?”

Well, if you want to stop waiting for storage…
you would need 7TB (or more) of memory.

And they are indeed out there:

Companies do do this.

This includes 2 12TB drives.

You could have bought a pair of

these instead of the Nutanix.

Plus one for your DR site.

Compare the price to:

• Hiring a dev DBA employee or

consultant

• Waiting for them to put in

columnstore

If you take this approach

Provision a UNC file path for backups.

Write SQL Server backups directly to the UNC path.

Sysadmins back up the UNC path.

Under absolutely no circumstances do the sysadmins

install any backup software on these boxes. I don’t

trust your current approach to backups. It’s a mess.

If something goes wrong on this box, don’t restore it:

• Fail over to the alternate box

• Erase the failed box and reinstall it

Back to the list of options

1. Hire a development DBA to focus on tuning,
implementing columnstore indexes

2. Add a lot more memory

3. Buy faster, more appropriate storage

4. Build a denormalized data warehouse

Let’s be real: you’re not doing the bottom two.

But I want to put in a few slides to talk about ‘em.

Option 3: more
appropriate

storage

Before you buy something

Ask a simple question:

“Can we talk to other customers of yours, that have

our database sizes, and they’re happy with your

solution?”

You should have asked Nutanix,
“Can we talk to happy customers of yours that have
5-10TB SQL Server databases on Nutanix?”

You would have learned a lot, and gone elsewhere.

Nutanix has its use cases!

It’s great for many virtualization deployments.

If you were interested in buying more appropriate

storage for a multi-terabyte data warehouse, you

could reuse your Nutanix gear for other VMs.

We briefly discussed your interest in replacing the

Nutanix, and it’s a non-starter – so let’s move on.

In the future, though, seriously: ask for references.

Option 4:

build a

denormalized

warehouse

“Can’t we just move to Azure?”

Sure! But we need to be clear on what Azure is.

Azure is a giant pool of services:

• Azure SQL DB: inappropriate for a 7TB warehouse

• Azure SQL DB Hyperscale: the migration would be

challenging due to the 100 MB/sec log throughput

limit today, although that might change in the future

• Azure SQL DB Managed Instances: might work, see
pricing info on the following page. Keep in mind that
your RPO/RTO goals dictate two of these servers,
at least, and do not include storage.

These prices are per-server

Challenges with Mgd Instances

It gets expensive, quickly.

You can only do the largest instance size due to your

database size. (Sure would be nice if you archived!)

Even that big instance size doesn’t have much more

memory than you have today.

So… you pay a lot to be right back where you started.

So why do people love the cloud?

Several reasons:

• They have smaller databases
(like many Nutanix customers - a lot of shops just

don’t have big, high-performance databases)

• They work harder on performance tuning

• They have very flexible performance needs (only

run at high utilization rates, certain times of year)

• Or, they re-architect for cloud-native architecture.

Two ways to move to the cloud

Lift-and-shift:

• Copy your existing implementation up to Azure

• Minimal application changes required

• Cheap to migrate, but expensive long term

Or rearchitect for cloud-native:

• Rewrite many of your things from the ground up

• Leverage cloud-specific services, things that

weren’t available when you first wrote your app

(event-based processing, serverless)

• Expensive to migrate, but cheaper long term

Cloud-native data warehouses

Another term: The Modern Data Warehouse

https://www.youtube.com/watch?v=TZHykX6cEyc

Rewrite your application to use:

• Azure Synapse Analytics

• Azure Data Lake Storage

• Power BI for reporting

This is a complete rewrite of how you do reporting, and
consulting companies specialize in this process.

This is indeed doable! Companies are doing it today.
(I just don’t think you’re interested in it. Questions?)

http://www.youtube.com/watch?v=TZHykX6cEyc

Back to our options

It really comes down to two:

1. Hire a development DBA to focus on tuning,
implementing columnstore indexes

2. Add a lot more memory (like 6-12 TB)

3. Buy faster, more appropriate storage

4. Build a denormalized data warehouse

Questions on those two?

Recap

The findings in one slide

Production DBA: focus on getting the backups under
control, start testing them, and work on DR.

Management: decide whether to:

• Hire a full time Dev DBA or a consultant,

and focus them on implementing columnstore

• Move to much larger servers (6-12TB RAM)

• Or both

Much longer term, 2-3 years out, you could:

• Rearchitect the data warehouse with cloud-

native solutions like Azure Synapse Analytics

Got questions going forward?

Email us at help@DBATower

If I can answer it in 5-15 minutes, it’s free.

Don’t overthink it: ask the question, and I’ll ask for

supporting resources I need to get the right answer.

mailto:help@brentozar.com

This should get

you pain relief.

Any questions
about the
findings?

	Slide 1
	Slide 2: Background
	Slide 3: Day 3 agenda
	Slide 4
	Slide 5: Patient: (redacted)
	Slide 6: Your #1 pain point: performance
	Slide 7: What your SQL Server told us…
	Slide 8: The causing factors
	Slide 9: Options to make it work
	Slide 10: Option 1: Hire a Dev DBA, do columnstore
	Slide 11
	Slide 12
	Slide 13: A Prod DBA answers these:
	Slide 14: A Prod DBA learns:
	Slide 15: A Dev DBA answers:
	Slide 16: For today, I’ll be the Dev DBA.
	Slide 17: While I’m here: prod DBA findings
	Slide 18: “Do we really need a Dev DBA?”
	Slide 19: Backups are failing left and right.
	Slide 20: Something’s trying to freeze writes on the Windows drive
	Slide 21: This is terribad.
	Slide 22: “We just started doing that! That can’t be our problem!”
	Slide 23
	Slide 24
	Slide 25: Who’s backing up what?
	Slide 26: Back to the Dev DBA.
	Slide 27: What they’d normally do
	Slide 28: This server is indeed waiting a lot.
	Slide 29
	Slide 30
	Slide 31: What we saw here
	Slide 32: “Who monitors these errors?”
	Slide 33: Your pain point: unpredictability
	Slide 34: This is tough here.
	Slide 35
	Slide 36: You can still do that.
	Slide 37: Columnstore might work well.
	Slide 38: Why columnstore?
	Slide 39: It’s not an easy task, though.
	Slide 40: If I was the Dev DBA…
	Slide 41: Your Dev DBA’s job description
	Slide 42: This is going to be hard to find.
	Slide 43: You should use a consultant.
	Slide 44: One small note on filegroups
	Slide 45: Back to the list of options
	Slide 46: Option 2: add memory
	Slide 47: Queries are waiting to read data.
	Slide 48: “How much do we need?”
	Slide 49: Companies do do this.
	Slide 50: If you take this approach
	Slide 51: Back to the list of options
	Slide 52: Option 3: more appropriate storage
	Slide 53: Before you buy something
	Slide 54: Nutanix has its use cases!
	Slide 55
	Slide 56: “Can’t we just move to Azure?”
	Slide 57: These prices are per-server
	Slide 58: Challenges with Mgd Instances
	Slide 59: So why do people love the cloud?
	Slide 60: Two ways to move to the cloud
	Slide 61: Cloud-native data warehouses
	Slide 62: Back to our options
	Slide 63: It really comes down to two:
	Slide 64: Recap
	Slide 65: The findings in one slide
	Slide 66: Got questions going forward?
	Slide 67: This should get you pain relief.

